Alcohole Eteres & Esteres
lunes, 2 de septiembre de 2013
Ácidos carboxílicos
INTRODUCCIÓN
Este trabajo fue hecho con el objetivo de informar, describir o enseñar a los espectadores sobre el tema de los ácidos carboxílicos sus propiedades físicas químicas los usos que estos pueden recibir sus beneficios y riegos añadiremos imágenes alusivas para hacer mas ludico el aprendizaje espero les guste y puedan aprender.
¿QUE ES UN ÁCIDO CARBOXÍLICO ?
Es una función de carbono primario. Se caracteriza por tener en el mismo carbono el grupo carbonilo y un oxhidrilo. Se nombran anteponiendo la palabra ácido y con el sufijo oico. Algunos de ellos son más conocidos por sus nombres comunes como el ácido fórmico (metanoico) y ácido acético (etanoico).
ESTRUCTURA Y ESTADO NATURAL
De los compuestos orgánicos que presentan acidez apreciable, los ácidos carboxílicos son, los más importantes. Estas substancias con tienen el grupo carboxilo.
Si esta unido a un grupo alquilo (RCOOH), o a un grupo arilo (ArCOOH), o que se trate de un grupo alifático o aromático, saturado o no saturado, substituido o no, las propiedades del grupo carboxiloson esencialmente las mismas.
Algunos se hallan en las picaduras de los insectos como el metanoico (hormigas), otros en aceites y grasas y los superiores en las ceras.
PROPIEDADES FÍSICAS DE LOS ÁCIDOS CARBOXILICOS
Sus estructuras hacen suponer que los ácidos carboxílicos sean moléculas polares y , tal como los alcoholes, pueden formar puentes de hidrógeno entre sí y con otros tipos de moléculas. Los ácidos carboxílicos se comportan en forma similar a los alcoholes en cuanto a sus solubilidades : los primeros cuatro son miscibles con agua, el ácido de cinco carbonos es parcialmente soluble y los superiores son virtualmente insolubles. La solubilidad en agua se debe a los puentes de hidrógeno entre el ácido carboxílico y el agua. El ácido aromático más simple, el benzoico, contiene demasiados átomos de carbono como para tener una solubilidad apreciable en agua.
Los ácidos carboxílicos son solubles en solventes menos polares, tales como éter, alcohol, benceno, etc. Los ácidos carboxílicos hierven a temperaturas aún más altas que los alcoholes. Estos puntos de ebullición tan elevados se deben a que un par de moléculas del ácido carboxílico se mantienen unidas no por un puente de hidrógeno sino por dos.
Las sales de sodio y potasio de la mayoría de los ácidos carboxílicos son fácilmente solubles en agua. Es el caso de ácidos carboxilicos de cadena larga. Estas sales son los principales ingredientes del jabón.
Debido a la fácil interconversión de ácidos y sus sales, este comportamiento puede emplearse de dos modos importantes: para identificación y para separación.
PROPIEDADES QUÍMICAS DE LOS ÁCIDOS CARBOXILICOS
El comportamiento químico de los ácidos carboxílicos esta determinado por el grupo carboxilo -COOH. Esta función consta de un grupo carbonilo (C=O) y de un hidroxilo (-OH). Donde el -OH es el que sufre casi todas las reacciones: pérdida de protón (H+) o reemplazo del grupo –OH por otro grupo.
REACCIÓN DE HUNSDIECKER
En ciertas condiciones los ácidos carboxílicos experimentan descarboxilación, es decir, perdida de dióxido de carbono, para formar un producto que tiene un átomo de carbono menos que el ácido inicial. En la reacción de Hunsdiecker, que implica el calentamiento de la sal de un metal pesado del ácido carboxílico con bromo o con yodo, se pierde dióxido de carbono y se forma un halogenuro de alquilo con un átomo de carbono menos que el ácido inicial. El ion metálico puede ser plata, mercurio II o plomo IV, todos funcionan igualmente bien.
HgO, Br2, CCl4
CH3(CH2)15CH2COOH CH3(CH2)15CH2Br + CO2
Ácido octadecanoico 1-bromoheptadecano
Reducción de Ácidos Carboxílicos.
Los ácidos carboxílicos son reducidos por hidruros fuertes, como el hidruro de litio y aluminio, para formar alcoholes primarios. Sin embargo, la reacción es difícil, y con frecuencia se requiere calentamiento en tetrahidrofurano como solvente para que se complete.
USOS O APLICACIONES DE LOS ÁCIDOS CARBOXILICOS
Se utilizan los ácidos carboxilicos como emulsificantes, se usan especialmente para pH bajos, debido a su estabilidad en estas condiciones.
Además se usan como antitranspirantes y como neutralizantes, también para fabricar detergentes biodegradables, lubricantes y espesantes para pinturas. El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial. Entre los nuevos usos de los ácidos grasos se encuentran la flotación de menas y la fabricación de desinfectantes, secadores de barniz y estabilizadores de calor para las resinas de vinilo. Los ácidos grasos se utilizan también en productos plásticos, como los recubrimientos para madera y metal, y en los automóviles, desde el alojamiento del filtro de aire hasta la tapicería.
BENEFICIOS Y RIESGOS DE LOS ÁCIDOS CARBOXILICOS
El Ácido Metanoico o Formico es el veneno de las hormigas
El Acido Butanoico o Butirico es propio de las mantequillas y le confiere ese sabor.
El Ácido Etanoico o acetico es el bendito vinagre ni que decir mas.
El Acido Propanoico o Propionico es fermentador.
Ácido Pentanoico o Ácido Valerianico es la sustancia activa de la valeriana que es buena medicina para los nervios.
El Ácido Tricarboxilico es la Vitamina C.
La alimentación es una fuente importante de ácidos grasos. Esta contribución es vital para mantener un nivel de lipidos estable y para suministrar al cuerpo los ácidos grasos esenciales . Los ácidos grasos calificados de esenciales incluyen los omega 3 y omega 6. El cuerpo humano no puede sintetizarlos, o los sintetiza en cantidades insuficientes, es necesaria por tanto una contribución mínima y regular por medio de la alimentación.
Actualmente, según la AFSSA, la dieta proporciona suficiente omega 6 y muy poco omega 3
con una relación omega-6/omega 3 insuficiente.
Sin embargo, numerosos estudios han demostrado que el exceso de ácidos grasos (especialmente saturadas e instaurados trans) podría tener consecuencias para la salud, incluido el aumento de forma significativa del riesgo de problemas cardiovasculares .
Algunos estudios se centran en el consumo excesivo de grasas insaturadas trans procedentes de los procesos industriales como la hidrogenación parcial de los ácidos grasos de origen vegetal (aceites).
BIBLIOGRÁFIA
http://es.wikipedia.org/wiki/%C3%81cido_carbox%C3%ADlico
http://www.educatina.com/quimica-organica/acidos-carboxilicos-2?gclid=CKjN4rT7rLkCFcdr7AodJGQAfA
http://html.rincondelvago.com/acidos-carboxilicos_4.html
domingo, 11 de agosto de 2013
CETONAS Y ALDEHIDOS
INTRODUCCIÓN
Este trabajo fue hecho con el fin de proporcionarnos mas información sobre las cetonas y aldehídos conocer mas a fondo su estructuras los riesgos y beneficios de estos, también veremos sus propiedades tanto físicas como químicas y al final sacaremos nuestra conclusiones .
¿QUE ES UNA CETONA?
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo unido a dos átomos de carbono. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo. Las cetonas se forman cuando dos enlaces libres que le quedan al carbono del grupo carbonilo se unen a cadenas hidrocarburos. El mas sencillo es la propanona, de nombre común acetona.
ESTRUCTURA
Las cetonas son compuestos parecidos a los aldehídos, poseen el grupo carbonilo (C=O) , con la diferencia que estas en vez de hidrógeno, contiene dos grupos orgánicos. Es decir, que luce una estructura de la forma RR’CO, donde se puede presentar que los grupos R y R’ sean alfáticos o aromáticos.
PROPIEDADES FÍSICAS
- Estado físico: son líquidas las que tienen hasta 10 carbonos, las más grandes son sólidas.
- Olor: Las pequeñas tienen un olor agradable, las medianas un olor fuerte y desagradable, y las más grandes son inodoras.
- Solubilidad: son insolubles en agua (a excepción de la propanona) y solubles en éter, cloroformo, y alcohol. Las cetonas de hasta cuatro carbonos pueden formar puentes de hidrógeno, haciéndose polares.
- Punto de ebullición: es mayor que el de los alcanos de igual peso molecular, pero menor que el de los alcoholes y ácidos carboxílicos en iguales condiciones.
PROPIEDADES QUÍMICAS
Reacciones de adición
Reacciones de hidrogenación de cetonas
Al añadir una molécula de agua H-OH al doble enlace carbono-oxígeno, resulta un diol. Si se produce un diol con los dos grupos –OH unidos al mismo tiempo, se le llama hidrato. En la reacción de formación de estos, el grupo –OH del agua se une al átomo de carbono del carbonilo, mientras que el –H al átomo de oxígeno carbonilo.
Adición de alcoholes
Al adicionar alcoholes (ROH) a las cetonas se producen hemicetales. Como ejemplo de esta formación esta la reacción entre la acetona y el alcohol etílico. No obstante, los hemicetales no son estables, tienen un bajo rendimiento y en su mayoría no pueden aislarse de la solución.
Adición de amoniaco y sus derivados
Las cetonas reaccionan con el amoníaco NH3, o con las aminas para formar un grupo de sustancias llamadas iminas o bases de Schiff. Las nimias resultantes son inestables y continúan reaccionando para formar, eventualmente, estructuras más complejas.
Reacción general
Adición del reactivo de Grignard
Reactivo de Grignard son compuestos organometálicos utilizados en numerosas reacciones orgánicas de síntesis. Al reaccionar dicho reactivo con una cetona se forman alcoholes terciarios con cadenas carbonadas más largas que los compuestos carbonilos que los originaron. Al ser el reactivo de Grignard polarizado debido a la diferencia en las electronegatividades del carbono y del magnesio, ataca primero al oxígeno del carbonilo para después atacar al carbono carbonilo. Como resultado de esta reacción, se obtiene un alcohol terciario.
Reacción general:
Reacción de sustitución
Halogenación
Se da la halogenación cuando una cetona está en presencia de una base fuerte. La reacción de sustitución ocurre en el carbono contiguo al grupo funcional. No obstante, puede reaccionar más de un halógeno, sustituyendo los hidrógenos pertenecientes a la cadena.
En otro ejemplo, este método permite obtener la monobromoactona, un poderoso gas lacrimógeno.
OBTENCIÓN
las cetonas se pueden obtener a partir de reacciones químicas y las que se encuentran en la naturaleza. Respecto a las reacciones, los métodos más importantes son mediante la oxidación de alcoholes secundarios, ozonólisis de alquenos, hidratación de alquinos, y a partir de reactivos de Grignard.
Fuentes naturales
En la naturaleza se pueden encontrar cetonas ampliamente distribuidas en diferentes campos, están en la fructuosa en las hormonas cortisona, testosterona y progesterona, así como también en el alcanfor, que es utilizado como medicamento tópico.
¿QUE PUEDE CAUSAR LA PRESENCIA DE CETONAS?
Las cetonas generalmente aparecen cuando los niveles de glicemia han estado demasiado elevados y esto sucede aún con mayor frecuencia cuando la persona está enferma con una gripe, fiebre, infección o bajo mucho estres.
Sin embargo recuerde que las cetonas se producen debido a que las células no pueden utilizar la glucosa como combustible (generalmente por falta de insulina) y en su lugar deben utilizar las grasas almacenadas en el cuerpo como fuente de energía. Por lo que cuando hay poca glucosa en el organismo (hipoglicemia) también puede haber presencia de cetonas. Está situación, sin embargo no causa cetoacidosis, ya que al contrarrestar la hipoglicemia, las células dispondrán nuevamente de glucosa como fuente de combustible.
Existen tres razones básicas para que haya presencia de cetonas en el organismo.
Falta de insulina para metabolizar los alimentos que ingiere. Por lo que sus niveles de glicemia se elevan (hiperglicemia). Recuerde además que cuando esté enfermo (a) podría requerir más cantidad de insulina.
Bajo nivel de azúcar en la sangre, (hipoglicemia) cuando el nivel de glicemia desciende demasiado las células deben utilizar las grasas como combustible.
Poca ingesta de alimentos, cuando las personas están enfermas pueden perder el apetito y esto puede incrementar la presencia de cetonas.
USOS DE LAS CETONAS
Las cetonas son usadas en varios aspectos de la vida diaria, pero la más común y usada es la ACETONA,
lo creamos o no, las cetonas se encuentra en una gran variedad de materiales en la que nosotros no nos damos cuenta ni si quiera de que estamos sobre ellas.
Algunos ejemplos de los usos de las cetonas son las siguientes:
.- Fibras Sintéticas (Mayormente utilizada en el interior de los automóviles de gama alta)
.-Solventes Industriales (Como el Thiner y la ACETONA)
.-Aditivos para plásticos (Thiner)
.-Fabricación de catalizadores
.-Fabricación de saborizantes y fragancias
.-Síntesis de medicamentos
.-Síntesis de vitaminas
.-Aplicación en cosméticos
..Adhesivos en base de poliuretano
Pero no solo tienen usos y aplicaciones, si no también datos importantes como los siguientes:
1.- El uso de las ACETONAS es frecuente para eliminar manchas en ropa de lana, esmaltes (ya que son derivados de la misma sustancia), esmaltes sintéticos, rubor, lapicero o algunas ceras.
2.- Las CETONAS se encuentran mayormente distribuidas en la naturaleza.
3.- Un ejemplo natura de las CETONAS en el cuerpo humano es la TESTOSTERONA.
4.- Las CETONAS, por lo general, tienen un aroma agradable y existen e gran variedad de perfumes.
5.- Algunos MEDICAMENTOS TÓPICOS (Las cremas por ejemplo) contienen cantidades seguras de CETONAS.
¿QUE SON LOS ALDEHÍDOS?
Los aldehídos son funciones de un carbono primario, en los que se han sustituido dos hidrógenos por un grupo carbonilo. En dicho grupo el carbono se halla unido al oxígeno por medio de dos enlaces covalentes.
Nomenclatura: la terminación ol de los alcoholes se sustituye por al. Sin embargo los primeros de la serie son más conocidos por sus nombres comunes.
Metanal : formaldehido
Etanal: acetaldehído
El aldehído aromático se llama benzaldehído.
PROPIEDADES FÍSICAS
El metanal es un gas de olor penetrante que al ser aspirado produce irritación y lagrimeo. El etanal tiene un agradable olor a frutas. A partir del etanal y hasta el de doce átomos de carbono son líquidos. Los restantes son sólidos.
Todos los aldehídos son menos densos que el agua. Los primeros de la serie son solubles en agua pero la solubilidad disminuye a medida que aumenta el número de átomos de carbono. Hierven a menor temperatura que los respectivos alcoholes.
PROPIEDADES QUÍMICAS
Debido a la diferencia de electronegatividad entre el oxígeno y el hidrógeno del grupo, se produce una polarización lo que los vuelve muy reactivos.
Se oxidan con facilidad transformándose en los ácidos carboxílicos respectivos. El carácter reductor de los aldehídos se verifica con la reacción de Tollens (nitrato de plata amoniacal); los productos de esta reacción son el ácido respectivo y un vistoso espejo de plata que permite identificar al grupo.
OBTENCIÓN
se preparan básicamente por oxidación suave de alcoholes primarios.
USOS DE LOS ALDEHÍDOS
USOS DE LOS ALDEHÍDOS
El aldehído más utilizado es el metanal o formaldehido. En solución acuosa al 40 % se lo conoce con el nombre de formol. Se utiliza en la industria para conservar maderas, cueros y en taxidermia. Debido a la posibilidad de polimerizarse se utiliza en la industria de plásticos como la baquelita.
El etanal se utiliza en la fabricación de espejos (reacción de Tollens y en la preparación de ácido acético.
El benzaldehído se emplea en la preparación de medicamentos, colorantes y en la industria de los perfumes.
El etanal se utiliza en la fabricación de espejos (reacción de Tollens y en la preparación de ácido acético.
El benzaldehído se emplea en la preparación de medicamentos, colorantes y en la industria de los perfumes.
RIESGOS Y BENEFICIOS DE LOS ALDEHÍDOS
RIESGOS
La mayor parte de los aldehídos y cetales pueden causar irritación de la piel, los ojos y el sistema respiratorio, siendo este efecto más pronunciado en los miembros inferiores de una serie, en los miembros con la cadena alifática instaurada y en los miembros con sustitución halógena. Los aldehídos pueden tener un efecto anestésico, pero las propiedades irritantes de algunos de ellos posiblemente obliguen al trabajador a limitar la exposición antes de que ésta sea suficiente como para que se manifiesten los efectos anestésicos. El efecto irritante en las mucosas puede estar relacionado con el efecto cilio-estático que inhibe el movimiento de los cilios que tapizan el tracto respiratorio con funciones esencialmente de limpieza. El grado de toxicidad varía mucho en esta familia. Algunos aldehídos aromáticos y ciertos aldehídos alifáticos se metabolizan rápidamente y no producen efectos adversos, pudiendo utilizarse sin riesgos como aromas alimentarios.
BENEFICIOS
Los aldehídos se encuentran entre los compuestos de mayor importancia, tanto en bioquímica como en la industria química. En el laboratorio, los aldehídos normalmente se elaboran por ruptura oxidativa de alquenos, por oxidación de alcoholes primarios o por reducción parcial de cloruros de ácidos o ésteres. Las cetonas se producen de manera similar por ruptura oxidativa de alquenos, por oxidación de alcoholes secundarios, o por adición de diorganocupratos a cloruros de ácido.
La reacción de adición nucleofílica es la reacción más importante de los aldehídos y las cetonas, siendo posible elaborar una gran cantidad de productos por adición nucleofílica. Las reacciones son aplicables a cetonas y aldehídos, pero en general estos últimos son más reactivos por razones tanto estéricas como electrónicas.
La reacción de adición nucleofílica es la reacción más importante de los aldehídos y las cetonas, siendo posible elaborar una gran cantidad de productos por adición nucleofílica. Las reacciones son aplicables a cetonas y aldehídos, pero en general estos últimos son más reactivos por razones tanto estéricas como electrónicas.
BIBLIOGRÁFICA
Esta información fue suministrada de diferentes fuentes tales como:
http://organica1.org/qo1/ok/alcohol/alco115.htm
http://www.quimicaorganica.org/enolatos-y-enoles/246-halogenacion-de-aldehidos-y-cetonas.html
www.itescam.edu.mx/principal/sylabus/fpdb/recursos/r88250.DOC
viernes, 19 de julio de 2013
TRABAJO DE QUÍMICA
Presentado por :
Karen Melissa Rojas Pabon Grado: 11-2
TRABAJO SOBRE LOS ALCOHOLES, ÉTERES Y ESTERES
INDICE
Introducción
1. ¿Que son los alcoholes?
2. Propiedades de los alcoholes
3. Usos de los alcoholes
4. ¿Que beneficios y riesgos tienen los éteres para la salud?
5. Imágenes
6. ¿Que son los éteres?
7. Propiedades de los éteres
8. Usos de los éteres
9. ¿Que beneficios y riesgos tienen los éteres para la salud?
10. Imágenes
11. ¿Que son los esteres?
12. Propiedades de los esteres
13. Usos de los esteres
14. ¿Que beneficios y riesgos tienen los esteres para la salud?
15. Imágenes
16. Bibliográfica
INTRODUCCIÓN
Este trabajo es hecho para implementar la informacion y el conocimiento de los alcoholes , eteres y esteres, que son los temas vistos en clase ,realmente la bibliografia es sacada de ´pagina muy recomendables y con muchas referencias.
1. ¿QUE SON ALCOHOLES?
En química se denomina alcohol (del árabe al-kuḥl الكحول, o al-ghawl الغول, "el espíritu", "toda sustancia pulverizada", "líquido destilado") a aquellos compuestos químicos orgánicos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente a un átomo de carbono. Además, este carbono debe estar saturado, es decir, debe tener solo enlaces simples a sendos átomos,1 esto diferencia a los alcoholes de los fenoles.Si contienen varios grupos hidroxilos se denominan polialcoholes. Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo.
Los árabes conocieron el alcohol extraído del vino por destilación. Sin embargo, su descubrimiento se remonta a principios del siglo XIV, atribuyéndose al médico Arnau de Villanova, sabio alquimista y profesor de medicina en Montpellier. La quinta esencia deRamon Llull no era otra cosa que el alcohol rectificado a una más suave temperatura. Lavoisier fue quien dio a conocer el origen y la manera de producir el alcohol por medio de la fermentación vínica, demostrando que bajo la influencia de la levadura de cerveza el azúcar de uva se transforma en ácido carbónico y alcohol. Fue además estudiado por Scheele, Gehle, Thénard, Duma y Boullay y en 1854 Berthelot lo obtuvo por síntesis.
2. PROPIEDADES DE LOS ALCOHOLES
PROPIEDADES FÍSICAS DE LOS ALCOHOLES
Las propiedades físicas de un alcohol se basan principalmente en su estructura. El alcohol esta compuesto por un alcano y agua. Contiene un grupo hidrofóbico (sin afinidad por el agua) del tipo de un alcano, y un grupo hidroxilo que es hidrófilo (con afinidad por el agua), similar al agua. De estas dos unidades estructurales, el grupo –OH da a los alcoholes sus propiedades físicas características, y el alquilo es el que las modifica, dependiendo de su tamaño y forma.
El grupo –OH es muy polar y, lo que es más importante, es capaz de establecer puentes de hidrógeno: con sus moléculas compañeras o con otras moléculas neutras.
Solubilidad:
Puentes de hidrógeno: La formación de puentes de hidrógeno permite la asociación entre las moléculas de alcohol.
A partir de 4 carbonos en la cadena de un alcohol, su solubilidad disminuye rápidamente en agua, porque el grupo hidroxilo (–OH), polar, constituye una parte relativamente pequeña en comparación con la porción hidrocarburo. A partir del hexanol son solubles solamente en solventes orgánicos.
Punto de Ebullición: Los grupos OH presentes en un alcohol hacen que su punto de ebullición sea más alto que el de los hidrocarburos de su mismo peso molecular. En los alcoholes el punto de ebullición aumenta con la cantidad de átomos de carbono y disminuye con el aumento de las ramificaciones.
El punto de fusión aumenta a medida que aumenta la cantidad de carbonos.
Densidad: La densidad de los alcoholes aumenta con el número de carbonos y sus ramificaciones.
PROPIEDADES QUÍMICAS DE LOS ALCOHOLES
Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua.
Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a uncarbono terciario, éste será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez éste sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática).
HIDROGENACIÓN DE ALCOHOLES
Para clorar o bromar alcoholes, se deben tomar en cuenta las siguientes consideraciones:
Alcohol primario: los alcoholes primarios reaccionan muy lentamente. Como no pueden formar carbocationes, el alcohol primario activado permanece en solución hasta que es atacado por el ion cloruro. Con un alcohol primario, la reacción puede tomar desde treinta minutos hasta varios días.
Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 20 minutos, porque los carbocationes secundarios son menos estables que los terciarios.
Alcohol terciario: los alcoholes terciarios reaccionan casi instantáneamente, porque forman carbocationes terciarios relativamente estables.
Los alcoholes terciarios reaccionan con ácido clorhídrico directamente para producir el cloroalcano terciario, pero si se usa un alcohol primario o secundario es necesaria la presencia de unácido de Lewis, un "activador", como el cloruro de zinc. Como alternativa la conversión puede ser llevada a cabo directamente usando cloruro de tionilo (SOCl2). Un alcohol puede también ser convertido a bromoalcano usando ácido bromhídrico o tribromuro de fósforo (PBr3), o a yodo alcano usando fósforo rojo y yodo para generar "in situ" el triyoduro de fósforo. Dos ejemplos:(H3C)3C-OH + HCl → (H3C)3C-Cl + H2OCH3-(CH2)6-OH + SOCl2 → CH3-(CH2)6-Cl + SO2 + HCl
OXIDACIÓN:
la oxidación es la reacción de alcoholes para producir ácidos carboxilicos, cetonas o aldehídos dependiendo de el tipo de alcohol y de catalizador, puede ser:
La reacción de un alcohol primario con ácido crómico (CrO3) en presencia de piridina produce un aldehído:
la reacción de un alcohol primario en presencia del reactivo de jones produce un ácido carboxilo:
la reacción de un alcohol secundario en presencia de permanganato de potasio produce una cetona:
DESHIDRATACION DE ALCOHOLES
es una propiedad de los alcoholes mediante la cual podemos obtener eteres o alquenos:
2 R -CH2OH ----------------) R - CH2 - O - CH2 - R'
R-R-OH ------------) R=R + H2O
REACCION CON CLORURO DE TIONILO:
El cloruro de tionilo (SOCl2) se puede usar para convertir alcoholes en el correspondiente cloruro de alquilo en una reacción simple que produce HCl gaseoso y SO2.
3. USO DE LOS ALCOHOLES
Los alcoholes se utilizan como productos químicos intermedios y
disolventes en las industrias de textiles, colorantes, productos químicos, detergentes, perfumes, alimentos, bebidas, cosméticos,pinturas y barnices. Algunos compuestos se utilizan también en la
des naturalización del alcohol, en productos de limpieza, aceites y tintas de secado rápido, anticongelantes, agentes espumígenos y en la flotación de minerales. El n-propanol es un disolvente utilizado en lacas, cosméticos,lociones dentales, tintas de impresión, lentes de contacto y líquidos de frenos. También sirve como antiséptico, aromatizante sintético de bebidas no alcohólicas y alimentos, producto químico
intermedio y desinfectante. El isopropanol es otro disolvente industrial importante que se utiliza como anticongelante, en aceites y tintas de secado rápido, en la des naturalización de alcoholes y en perfumes. Se emplea como antiséptico y sustitutivo del alcohol etílico en cosméticos ( eje. lociones para la piel, tónicos
capilares y alcohol para fricciones), pero no puede utilizarse en productos farmacéuticos aplicados internamente. El isopropanol es un ingrediente de jabones líquidos, limpia cristales, aromatizante sintético de bebidas no alcohólicas y alimentos y producto químico intermedio.
El n-butanol se emplea como disolvente de pinturas, lacas,barnices, resinas naturales y sintéticas, gamos, aceites vegetales,tintes y alcaloides. Se utiliza como sustancia intermedia en la fabricación de productos químicos y farmacéuticos, y en las industrias de cuero artificial, textiles, gafas de seguridad, pastas
de caucho, barnices de laca, impermeables, películas fotográficas perfumes. El sec -butanol se utiliza también como disolvente producto químico intermedio, y se encuentra en líquidos hidráulicos de frenos, limpiadores industriales, abrillantadores, decapantes de pinturas, agentes de flotación para minerales, esencias de frutas, perfumes y colorantes. El isobutanol , un disolvente para revestimientos de superficie y
adhesivos, se emplea en lacas, decapantes de pinturas, perfumes, productos de limpieza y líquidos hidráulicos. El terc-butanol se utiliza para la eliminación del agua de los productos, como disolvente en la fabricación de fármacos, perfumes y aromas, y como producto químico intermedio. También es un ingrediente de productos industriales de alcohol, un desnaturalizante de alcoholes y un cebador de octano en gasolinas. Los alcoholes amílicos actúan como espumígenos en la flotación de minerales. Muchos
alcoholes, entre ellos el alcohol metílico, 2-etilbutanol, 2-etil hexanol, ciclo hexanol, 2-octano y metilciclo hexanol, se utilizan en la fabricación
de lacas. Además de sus numerosas aplicaciones como disolventes, el ciclohexanol y el metilciclohexanol son también útilesen la industria textil. El ciclohexanol se utiliza en el acabadode tejidos, el procesado del cuero y como homogeneizado de jabones y emulsiones detergentes sintéticas. El metilciclohexanol
es un componente de productos quitamanchas a base de jabón y un agente de mezcla en jabones y detergentes para tejidos especiales. El alcohol bencílico se utiliza en la preparación de perfumes,productos farmacéuticos, cosméticos, colorantes, tintas y ésteres bencílicos. Sirve también como disolvente de lacas, plastificante y desengrasante en productos para la limpieza de alfombras. El 2-cloroetanol se emplea como agente de limpieza y disolvente de éteres de celulosa.
El etanol es la materia prima de numerosos productos, como acetaldehído, éter etílico y cloroetano. Se utiliza como anticongelante, aditivo alimentario y medio de crecimiento de levaduras, en la fabricación de revestimientos de superficie y en la preparación de mezclas de gasolina y alcohol etílico. La producción de butadieno a partir de alcohol etílico ha tenido una gran importancia en las industrias de los plásticos y el caucho sintético. El
alcohol etílico puede disolver muchas sustancias y, por este motivo, se utiliza como disolvente en la fabricación de fármacos,plásticos, lacas, barnices, plastificantes, perfumes, cosméticos, aceleradores del caucho, etc.
El metanol es un disolvente de tintas, colorantes, resinas y adhesivos. Se utiliza en la fabricación de película fotográfica, plásticos, jabones textiles, tintes de madera, tejidos con capa de resina sintética, cristal inastillable y productos impermeabilizantes. Sirve como materia prima para la fabricación de muchos productos químicos y es un ingrediente de decapantes de pinturas y barnices, productos desengrasaste, líquidos embalsamadores y mezclas anticongelantes.
EFECTOS DE LOS ALCOHOLES CUANDO ENTRAN EN CONTACTO CON EL CUERPO HUMANO
ALCOHOL ETÍLICO (ETANOL).
El alcohol se absorbe en estómago (un 20% en ayuno) y el máximo en sangre aparece a los 40-45 minutos. La comida retarda la absorción en el tubo digestivo. El alcohol tarda de 10-30 horas en desaparecer de la sangre.
El metabolismo es:
Alcohol alcohol deshidrogenasas acetaldehído.
Acetaldehído alcohol deshidrogenasa ácido acético.
La sintomatología a dosis elevadas y repetidas es de hepatotóxico y neurotóxico potente.
1. Sedación, distensión psíquica.
2. Euforia.
3. Alteración de la sensación dolorosa.
4. Alteración de la coordinación muscular.
5. Narcosis.
6. Hiperventilación.
7. Sensación de angustia.
8. Pérdida de reflejos.
9. Parálisis de la respiración y muerte muy difícil porque provoca vómito.
El etanol es uno de los productos que más contraindicaciones tiene.
METANOL
Es alcohol de quemar. Suele ser azul por el colorante que le añaden.
Es más tóxico en humanos y primates que en otras especies animales. Se han reportado también casos letales por exposición dérmica e inhalatoria.
El MeOH es oxidado en el hígado a formaldehído (por la alcohol deshidrogenasa en primates y catalasa peroxidasa en roedores). Después pasa a ácido fórmico (por la formaldehído deshidrogenasa) en mamíferos no primates. El ácido fórmico pasa a CO2 y H2O.
En humanos, la ingestión de 0'15 ml / kg de metanol puro puede causar una intoxicación borrachera, acidosis metabólica a las 8-12 horas y posible ceguera temporal o permanente.
Se debe hacer emesis, lavado gástrico, carbón activo y corrección de la acidosis para evitar que continúe.
Actuando la alcohol deshidrogenasa se da etanol, 4-metilpirazol (inhibidor de la alcohol deshidrogenasa).
Antes se usaba para ayudar a llegar a cierto grado de alcohol en bebidas.
ETILENGLICOL
Su mecanismo de acción consiste en la formación de ácidos oxálicos que se combinan con Ca2+ y cristaliza en capilares y túbulos renales.
La sintomatología tiene dos fases. La primera fase produce vómitos, depresión nerviosa, ataxia, taquipnea, hipotermia y acidosis.
La segunda fase produce una insuficiencia renal.
Los cristales son birrefringentes y se puede detectar por eso.
El tratamiento consiste en un lavado gástrico, carbón activo, catártico salino, pentobarbital sódico, prednisona, bicarbonato de sodio IV, etanol (no siempre recomendable), 4-metilpirazol (antídoto de elección).
DISOLVENTES Y SUSTANCIAS AFINES
Productos usados preferentemente como disolventes o como diluyentes, pero también como compuestos de partida para la síntesis de otros productos combustibles, anticoagulantes, aromatizantes, bebidas, fármacos...
Hidrocarburos alifáticos pentano, hexano (muy tóxico porque se metaboliza en 2,3-hexanodiona neurotóxico muy potente), heptano, octano, etilén, acetileno...
Hidrocarburos alicíclicos ciclopropano, ciclohexano (muy tóxico porque se metabolismo en 2,3-hexanodiona neurotóxico muy potente)...
Hidrocarburos aromáticos benceno (anillo principal aromático, es carcinógeno, lo lleva más la gasolina sin plomo), tolueno, xileno...
Hidrocarburos halogenados cloroformo, tricloroetileno, tetracloruro de C (disolvente de productos en seco), halotano, enfluorane (muy buenos disolventes pero muy problemáticos).
Cetonas acetona.
Éter éter dietílico (buen disolvente y anestésico). Muy explosivo. Punto de ebullición de 35ºC.
Alcoholes metanol, etanol, n-propanol, isopropanol, etilenglicol, fenol...
Aldehídos formaldehído, acetaldehído...
Nitrilos acetonitrilo...
ALQUITRÁN
Muy variable. 50% betún y 50% otros compuestos como el benceno, tolueno, xilenos, naftalenos, fenoles, cresoles y amoniacos.
Les gusta mucho a los cerdos. También a los gatos (muy susceptible para la glucoronoconjugación).
La sintomatología que produce es anorexia, depresión, debilidad, ictericia, taquipnea y muerte.
Los esnifadores de cola usaban el benceno y, ahora, el tolueno.
FENOLES Y CRESOLES
Usados como desinfectantes, ungüentos, preservación de la madera (palos de electricidad y teléfonos, traviesas de la vía...).
Afecta a gatos principalmente.
La sintomatología es depresión, vómitos, incoordinación, convulsiones, coma y muerte.
El tratamiento consiste en emesis o lavado gástrico, glucosa salina IV, estimulantes del sistema nervioso...
Tiene mal pronóstico.
HIDROCARBUROS AROMÁTICOS POLICÍCLICOS
Sobre todo se forman en la combustión de materia orgánica, volcanes, incendios forestales, alimentos ahumados o alimentos sometidos a altas temperaturas, motores de combustión interna, tabaco (sobre todo benzopireno).
Necesitan la activación metabólica.
Son carcinógenos.
No es recomendable basar la dieta en estos productos.
4. RIESGOS Y BENEFICIOS DE LOS ALCOHOLES
RIESGOS PARA LA SALUD
DAÑOS AL CUERPO
Inhalación: Altas concentraciones de vapores de metanol pueden causar la muerte.
El primer síntoma de envenenamiento con Metanol es la ceguera ya que daña el nervio óptico.
El Etanol, es la droga más antigua usada por el hombre, es una de las drogas que provoca mas dependencia afectando principalmente al hígado. El Alcohólico sufre una variación biológica cualitativa de la respuesta del sistema nervioso.
Sistema Digestivo: Irrita la mucosa del esófago, el estomago, y el intestino cuyas funciones digestivas altera. También puede originar diarrea crónica y cirrosis hepática, enfermedad en la cual el tejido normal del hígado es reemplazado por cicatrices fibrosas que impiden el cumplimiento de las importantes funciones de este órgano.
Sistema Respiratorio: Causa neumonías, abscesos pulmonares.
Sistema Circulatorio: produce insuficiencia cardiaca, alteraciones del ritmo de sus latidos, agrandamiento del corazón e hipertensión. Disminuye la actividad de los leucocitos y la resistencia de las enfermedades.
Sistema Muscular: origina inflamaciones y calambres.
Sistema Nervioso: provoca desinhibiciones, lentitud en los reflejos, incoordinación muscular, dificultades en la memoria, desorientación en el tiempo y espacio. Además ocasiona modificaciones en el carácter, con periodos de tristeza, de pereza, de irritabilidad y de violencia, pesadillas, alucinaciones nocturnas especialmente relacionadas con precipicios y con animales, monstruos que lo atacan.
En la piel: causa dilatación capilar y le da un color rojo oscuro y un aspecto rugoso en la cara, especialmente en la nariz.
En la visión: la alcoholemia excesiva estecla el campo visual, que normalmente es de uno 180º. Provoca así la “visión túnel” que impide al conductor percibir los vehículos las personas que se aproximen a ambos lados trasversales.
El Metanol, se utiliza como disolvente, anticongelante, desnaturalizante del “alcohol de quemar” y para la fabricaron de barnices, plásticos, y otros compuestos orgánicos. Hace un tiempo se experimento que con dosis muy pequeñas de Metanol disueltas en agua se obtiene muchos beneficios en plantas de clasificación C3 y en condiciones de cálidas y soleadas. Esta solución facilitaba el crecimiento de cosechas más frecuentes y mayores, minimizaba el uso de agua en el riego y una reducción en el uso de plaguicidas
El Etanol, además de utilizarse para la producción de bebidas alcohólicas, su fin esta destinado a el uso industrial y se emplea como disolvente en farmacia, perfumería y en compuestos orgánicos.
El Propanol, se utiliza como un antiséptico aún más eficaz que el alcohol etílico; es usado como un disolvente importante, su uso ams común es en forma de quitaesmalte. Además se utiliza como desnaturalizante, generalmente mezclado con otros compuestos.
5. IMÁGENES
Para aprender mas
6. ¿QUE SON LOS ETERES?
En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios:ROH + HOR' → ROR' + H2O
Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.RO- + R'X → ROR' + X-
Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a serhidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.
Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.
El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.
7.PROPIEDADES DE LOS ETERES
PROPIEDADES FISICAS
Estructuralmente los éteres pueden considerarse derivados del agua o alcoholes, en los que se han reemplazado uno o dos hidrógenos, respectivamente, por restos carbonados.
La estructura angular de los éteres se explica bien asumiendo una hibridación sp3 en el oxígeno, que posee dos pares de electrones no compartidos,no puede establecer enlaces de hidrógeno consigo mismo y sus puntos de ebullición y fusión son muchos más bajos que los alcoholes referibles.
Un caso muy especial lo constituyen los epóxidos, que son éteres cíclicos de tres miembros. El anillo contiene mucha tensión, aunque algo menos que en el ciclo propano.
CIclo propano
Epóxido de etileno
Debido a que el ángulo del enlace C-o-C no es de 180º, los momentos dipolares de los dos enlaces C-O no se anulan; en consecuencia, los éteres presentan un pequeño momento dipolar neto (por ejemplo, 1.18 D para el dietil éter).
PROPIEDADES QUÍMICAS
9. ¿Que beneficios y riesgos tienen los éteres para la salud?
10. Imágenes
11. ¿Que son los esteres?
12. Propiedades de los esteres
13. Usos de los esteres
14. ¿Que beneficios y riesgos tienen los esteres para la salud?
15. Imágenes
16. Bibliográfica
INTRODUCCIÓN
Este trabajo es hecho para implementar la informacion y el conocimiento de los alcoholes , eteres y esteres, que son los temas vistos en clase ,realmente la bibliografia es sacada de ´pagina muy recomendables y con muchas referencias.
1. ¿QUE SON ALCOHOLES?
En química se denomina alcohol (del árabe al-kuḥl الكحول, o al-ghawl الغول, "el espíritu", "toda sustancia pulverizada", "líquido destilado") a aquellos compuestos químicos orgánicos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente a un átomo de carbono. Además, este carbono debe estar saturado, es decir, debe tener solo enlaces simples a sendos átomos,1 esto diferencia a los alcoholes de los fenoles.Si contienen varios grupos hidroxilos se denominan polialcoholes. Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo.
Los árabes conocieron el alcohol extraído del vino por destilación. Sin embargo, su descubrimiento se remonta a principios del siglo XIV, atribuyéndose al médico Arnau de Villanova, sabio alquimista y profesor de medicina en Montpellier. La quinta esencia deRamon Llull no era otra cosa que el alcohol rectificado a una más suave temperatura. Lavoisier fue quien dio a conocer el origen y la manera de producir el alcohol por medio de la fermentación vínica, demostrando que bajo la influencia de la levadura de cerveza el azúcar de uva se transforma en ácido carbónico y alcohol. Fue además estudiado por Scheele, Gehle, Thénard, Duma y Boullay y en 1854 Berthelot lo obtuvo por síntesis.
2. PROPIEDADES DE LOS ALCOHOLES
PROPIEDADES FÍSICAS DE LOS ALCOHOLES
Las propiedades físicas de un alcohol se basan principalmente en su estructura. El alcohol esta compuesto por un alcano y agua. Contiene un grupo hidrofóbico (sin afinidad por el agua) del tipo de un alcano, y un grupo hidroxilo que es hidrófilo (con afinidad por el agua), similar al agua. De estas dos unidades estructurales, el grupo –OH da a los alcoholes sus propiedades físicas características, y el alquilo es el que las modifica, dependiendo de su tamaño y forma.
El grupo –OH es muy polar y, lo que es más importante, es capaz de establecer puentes de hidrógeno: con sus moléculas compañeras o con otras moléculas neutras.
Solubilidad:
Puentes de hidrógeno: La formación de puentes de hidrógeno permite la asociación entre las moléculas de alcohol.
A partir de 4 carbonos en la cadena de un alcohol, su solubilidad disminuye rápidamente en agua, porque el grupo hidroxilo (–OH), polar, constituye una parte relativamente pequeña en comparación con la porción hidrocarburo. A partir del hexanol son solubles solamente en solventes orgánicos.
Punto de Ebullición: Los grupos OH presentes en un alcohol hacen que su punto de ebullición sea más alto que el de los hidrocarburos de su mismo peso molecular. En los alcoholes el punto de ebullición aumenta con la cantidad de átomos de carbono y disminuye con el aumento de las ramificaciones.
El punto de fusión aumenta a medida que aumenta la cantidad de carbonos.
Densidad: La densidad de los alcoholes aumenta con el número de carbonos y sus ramificaciones.
PROPIEDADES QUÍMICAS DE LOS ALCOHOLES
Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua.
Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a uncarbono terciario, éste será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez éste sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática).
HIDROGENACIÓN DE ALCOHOLES
Para clorar o bromar alcoholes, se deben tomar en cuenta las siguientes consideraciones:
Alcohol primario: los alcoholes primarios reaccionan muy lentamente. Como no pueden formar carbocationes, el alcohol primario activado permanece en solución hasta que es atacado por el ion cloruro. Con un alcohol primario, la reacción puede tomar desde treinta minutos hasta varios días.
Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 20 minutos, porque los carbocationes secundarios son menos estables que los terciarios.
Alcohol terciario: los alcoholes terciarios reaccionan casi instantáneamente, porque forman carbocationes terciarios relativamente estables.
Los alcoholes terciarios reaccionan con ácido clorhídrico directamente para producir el cloroalcano terciario, pero si se usa un alcohol primario o secundario es necesaria la presencia de unácido de Lewis, un "activador", como el cloruro de zinc. Como alternativa la conversión puede ser llevada a cabo directamente usando cloruro de tionilo (SOCl2). Un alcohol puede también ser convertido a bromoalcano usando ácido bromhídrico o tribromuro de fósforo (PBr3), o a yodo alcano usando fósforo rojo y yodo para generar "in situ" el triyoduro de fósforo. Dos ejemplos:(H3C)3C-OH + HCl → (H3C)3C-Cl + H2OCH3-(CH2)6-OH + SOCl2 → CH3-(CH2)6-Cl + SO2 + HCl
OXIDACIÓN:
la oxidación es la reacción de alcoholes para producir ácidos carboxilicos, cetonas o aldehídos dependiendo de el tipo de alcohol y de catalizador, puede ser:
La reacción de un alcohol primario con ácido crómico (CrO3) en presencia de piridina produce un aldehído:
la reacción de un alcohol primario en presencia del reactivo de jones produce un ácido carboxilo:
la reacción de un alcohol secundario en presencia de permanganato de potasio produce una cetona:
DESHIDRATACION DE ALCOHOLES
es una propiedad de los alcoholes mediante la cual podemos obtener eteres o alquenos:
2 R -CH2OH ----------------) R - CH2 - O - CH2 - R'
R-R-OH ------------) R=R + H2O
REACCION CON CLORURO DE TIONILO:
El cloruro de tionilo (SOCl2) se puede usar para convertir alcoholes en el correspondiente cloruro de alquilo en una reacción simple que produce HCl gaseoso y SO2.
3. USO DE LOS ALCOHOLES
Los alcoholes se utilizan como productos químicos intermedios y
disolventes en las industrias de textiles, colorantes, productos químicos, detergentes, perfumes, alimentos, bebidas, cosméticos,pinturas y barnices. Algunos compuestos se utilizan también en la
des naturalización del alcohol, en productos de limpieza, aceites y tintas de secado rápido, anticongelantes, agentes espumígenos y en la flotación de minerales. El n-propanol es un disolvente utilizado en lacas, cosméticos,lociones dentales, tintas de impresión, lentes de contacto y líquidos de frenos. También sirve como antiséptico, aromatizante sintético de bebidas no alcohólicas y alimentos, producto químico
intermedio y desinfectante. El isopropanol es otro disolvente industrial importante que se utiliza como anticongelante, en aceites y tintas de secado rápido, en la des naturalización de alcoholes y en perfumes. Se emplea como antiséptico y sustitutivo del alcohol etílico en cosméticos ( eje. lociones para la piel, tónicos
capilares y alcohol para fricciones), pero no puede utilizarse en productos farmacéuticos aplicados internamente. El isopropanol es un ingrediente de jabones líquidos, limpia cristales, aromatizante sintético de bebidas no alcohólicas y alimentos y producto químico intermedio.
El n-butanol se emplea como disolvente de pinturas, lacas,barnices, resinas naturales y sintéticas, gamos, aceites vegetales,tintes y alcaloides. Se utiliza como sustancia intermedia en la fabricación de productos químicos y farmacéuticos, y en las industrias de cuero artificial, textiles, gafas de seguridad, pastas
de caucho, barnices de laca, impermeables, películas fotográficas perfumes. El sec -butanol se utiliza también como disolvente producto químico intermedio, y se encuentra en líquidos hidráulicos de frenos, limpiadores industriales, abrillantadores, decapantes de pinturas, agentes de flotación para minerales, esencias de frutas, perfumes y colorantes. El isobutanol , un disolvente para revestimientos de superficie y
adhesivos, se emplea en lacas, decapantes de pinturas, perfumes, productos de limpieza y líquidos hidráulicos. El terc-butanol se utiliza para la eliminación del agua de los productos, como disolvente en la fabricación de fármacos, perfumes y aromas, y como producto químico intermedio. También es un ingrediente de productos industriales de alcohol, un desnaturalizante de alcoholes y un cebador de octano en gasolinas. Los alcoholes amílicos actúan como espumígenos en la flotación de minerales. Muchos
alcoholes, entre ellos el alcohol metílico, 2-etilbutanol, 2-etil hexanol, ciclo hexanol, 2-octano y metilciclo hexanol, se utilizan en la fabricación
de lacas. Además de sus numerosas aplicaciones como disolventes, el ciclohexanol y el metilciclohexanol son también útilesen la industria textil. El ciclohexanol se utiliza en el acabadode tejidos, el procesado del cuero y como homogeneizado de jabones y emulsiones detergentes sintéticas. El metilciclohexanol
es un componente de productos quitamanchas a base de jabón y un agente de mezcla en jabones y detergentes para tejidos especiales. El alcohol bencílico se utiliza en la preparación de perfumes,productos farmacéuticos, cosméticos, colorantes, tintas y ésteres bencílicos. Sirve también como disolvente de lacas, plastificante y desengrasante en productos para la limpieza de alfombras. El 2-cloroetanol se emplea como agente de limpieza y disolvente de éteres de celulosa.
El etanol es la materia prima de numerosos productos, como acetaldehído, éter etílico y cloroetano. Se utiliza como anticongelante, aditivo alimentario y medio de crecimiento de levaduras, en la fabricación de revestimientos de superficie y en la preparación de mezclas de gasolina y alcohol etílico. La producción de butadieno a partir de alcohol etílico ha tenido una gran importancia en las industrias de los plásticos y el caucho sintético. El
alcohol etílico puede disolver muchas sustancias y, por este motivo, se utiliza como disolvente en la fabricación de fármacos,plásticos, lacas, barnices, plastificantes, perfumes, cosméticos, aceleradores del caucho, etc.
El metanol es un disolvente de tintas, colorantes, resinas y adhesivos. Se utiliza en la fabricación de película fotográfica, plásticos, jabones textiles, tintes de madera, tejidos con capa de resina sintética, cristal inastillable y productos impermeabilizantes. Sirve como materia prima para la fabricación de muchos productos químicos y es un ingrediente de decapantes de pinturas y barnices, productos desengrasaste, líquidos embalsamadores y mezclas anticongelantes.
EFECTOS DE LOS ALCOHOLES CUANDO ENTRAN EN CONTACTO CON EL CUERPO HUMANO
ALCOHOL ETÍLICO (ETANOL).
El alcohol se absorbe en estómago (un 20% en ayuno) y el máximo en sangre aparece a los 40-45 minutos. La comida retarda la absorción en el tubo digestivo. El alcohol tarda de 10-30 horas en desaparecer de la sangre.
El metabolismo es:
Alcohol alcohol deshidrogenasas acetaldehído.
Acetaldehído alcohol deshidrogenasa ácido acético.
La sintomatología a dosis elevadas y repetidas es de hepatotóxico y neurotóxico potente.
1. Sedación, distensión psíquica.
2. Euforia.
3. Alteración de la sensación dolorosa.
4. Alteración de la coordinación muscular.
5. Narcosis.
6. Hiperventilación.
7. Sensación de angustia.
8. Pérdida de reflejos.
9. Parálisis de la respiración y muerte muy difícil porque provoca vómito.
El etanol es uno de los productos que más contraindicaciones tiene.
METANOL
Es alcohol de quemar. Suele ser azul por el colorante que le añaden.
Es más tóxico en humanos y primates que en otras especies animales. Se han reportado también casos letales por exposición dérmica e inhalatoria.
El MeOH es oxidado en el hígado a formaldehído (por la alcohol deshidrogenasa en primates y catalasa peroxidasa en roedores). Después pasa a ácido fórmico (por la formaldehído deshidrogenasa) en mamíferos no primates. El ácido fórmico pasa a CO2 y H2O.
En humanos, la ingestión de 0'15 ml / kg de metanol puro puede causar una intoxicación borrachera, acidosis metabólica a las 8-12 horas y posible ceguera temporal o permanente.
Se debe hacer emesis, lavado gástrico, carbón activo y corrección de la acidosis para evitar que continúe.
Actuando la alcohol deshidrogenasa se da etanol, 4-metilpirazol (inhibidor de la alcohol deshidrogenasa).
Antes se usaba para ayudar a llegar a cierto grado de alcohol en bebidas.
ETILENGLICOL
Su mecanismo de acción consiste en la formación de ácidos oxálicos que se combinan con Ca2+ y cristaliza en capilares y túbulos renales.
La sintomatología tiene dos fases. La primera fase produce vómitos, depresión nerviosa, ataxia, taquipnea, hipotermia y acidosis.
La segunda fase produce una insuficiencia renal.
Los cristales son birrefringentes y se puede detectar por eso.
El tratamiento consiste en un lavado gástrico, carbón activo, catártico salino, pentobarbital sódico, prednisona, bicarbonato de sodio IV, etanol (no siempre recomendable), 4-metilpirazol (antídoto de elección).
DISOLVENTES Y SUSTANCIAS AFINES
Productos usados preferentemente como disolventes o como diluyentes, pero también como compuestos de partida para la síntesis de otros productos combustibles, anticoagulantes, aromatizantes, bebidas, fármacos...
Hidrocarburos alifáticos pentano, hexano (muy tóxico porque se metaboliza en 2,3-hexanodiona neurotóxico muy potente), heptano, octano, etilén, acetileno...
Hidrocarburos alicíclicos ciclopropano, ciclohexano (muy tóxico porque se metabolismo en 2,3-hexanodiona neurotóxico muy potente)...
Hidrocarburos aromáticos benceno (anillo principal aromático, es carcinógeno, lo lleva más la gasolina sin plomo), tolueno, xileno...
Hidrocarburos halogenados cloroformo, tricloroetileno, tetracloruro de C (disolvente de productos en seco), halotano, enfluorane (muy buenos disolventes pero muy problemáticos).
Cetonas acetona.
Éter éter dietílico (buen disolvente y anestésico). Muy explosivo. Punto de ebullición de 35ºC.
Alcoholes metanol, etanol, n-propanol, isopropanol, etilenglicol, fenol...
Aldehídos formaldehído, acetaldehído...
Nitrilos acetonitrilo...
ALQUITRÁN
Muy variable. 50% betún y 50% otros compuestos como el benceno, tolueno, xilenos, naftalenos, fenoles, cresoles y amoniacos.
Les gusta mucho a los cerdos. También a los gatos (muy susceptible para la glucoronoconjugación).
La sintomatología que produce es anorexia, depresión, debilidad, ictericia, taquipnea y muerte.
Los esnifadores de cola usaban el benceno y, ahora, el tolueno.
FENOLES Y CRESOLES
Usados como desinfectantes, ungüentos, preservación de la madera (palos de electricidad y teléfonos, traviesas de la vía...).
Afecta a gatos principalmente.
La sintomatología es depresión, vómitos, incoordinación, convulsiones, coma y muerte.
El tratamiento consiste en emesis o lavado gástrico, glucosa salina IV, estimulantes del sistema nervioso...
Tiene mal pronóstico.
HIDROCARBUROS AROMÁTICOS POLICÍCLICOS
Sobre todo se forman en la combustión de materia orgánica, volcanes, incendios forestales, alimentos ahumados o alimentos sometidos a altas temperaturas, motores de combustión interna, tabaco (sobre todo benzopireno).
Necesitan la activación metabólica.
Son carcinógenos.
No es recomendable basar la dieta en estos productos.
4. RIESGOS Y BENEFICIOS DE LOS ALCOHOLES
RIESGOS PARA LA SALUD
DAÑOS AL CUERPO
Inhalación: Altas concentraciones de vapores de metanol pueden causar la muerte.
El primer síntoma de envenenamiento con Metanol es la ceguera ya que daña el nervio óptico.
El Etanol, es la droga más antigua usada por el hombre, es una de las drogas que provoca mas dependencia afectando principalmente al hígado. El Alcohólico sufre una variación biológica cualitativa de la respuesta del sistema nervioso.
Sistema Digestivo: Irrita la mucosa del esófago, el estomago, y el intestino cuyas funciones digestivas altera. También puede originar diarrea crónica y cirrosis hepática, enfermedad en la cual el tejido normal del hígado es reemplazado por cicatrices fibrosas que impiden el cumplimiento de las importantes funciones de este órgano.
Sistema Respiratorio: Causa neumonías, abscesos pulmonares.
Sistema Circulatorio: produce insuficiencia cardiaca, alteraciones del ritmo de sus latidos, agrandamiento del corazón e hipertensión. Disminuye la actividad de los leucocitos y la resistencia de las enfermedades.
Sistema Muscular: origina inflamaciones y calambres.
Sistema Nervioso: provoca desinhibiciones, lentitud en los reflejos, incoordinación muscular, dificultades en la memoria, desorientación en el tiempo y espacio. Además ocasiona modificaciones en el carácter, con periodos de tristeza, de pereza, de irritabilidad y de violencia, pesadillas, alucinaciones nocturnas especialmente relacionadas con precipicios y con animales, monstruos que lo atacan.
En la piel: causa dilatación capilar y le da un color rojo oscuro y un aspecto rugoso en la cara, especialmente en la nariz.
En la visión: la alcoholemia excesiva estecla el campo visual, que normalmente es de uno 180º. Provoca así la “visión túnel” que impide al conductor percibir los vehículos las personas que se aproximen a ambos lados trasversales.
El Metanol, se utiliza como disolvente, anticongelante, desnaturalizante del “alcohol de quemar” y para la fabricaron de barnices, plásticos, y otros compuestos orgánicos. Hace un tiempo se experimento que con dosis muy pequeñas de Metanol disueltas en agua se obtiene muchos beneficios en plantas de clasificación C3 y en condiciones de cálidas y soleadas. Esta solución facilitaba el crecimiento de cosechas más frecuentes y mayores, minimizaba el uso de agua en el riego y una reducción en el uso de plaguicidas
El Etanol, además de utilizarse para la producción de bebidas alcohólicas, su fin esta destinado a el uso industrial y se emplea como disolvente en farmacia, perfumería y en compuestos orgánicos.
El Propanol, se utiliza como un antiséptico aún más eficaz que el alcohol etílico; es usado como un disolvente importante, su uso ams común es en forma de quitaesmalte. Además se utiliza como desnaturalizante, generalmente mezclado con otros compuestos.
5. IMÁGENES
Para aprender mas
6. ¿QUE SON LOS ETERES?
En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios:ROH + HOR' → ROR' + H2O
Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.RO- + R'X → ROR' + X-
Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a serhidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.
Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.
El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.
7.PROPIEDADES DE LOS ETERES
PROPIEDADES FISICAS
Estructuralmente los éteres pueden considerarse derivados del agua o alcoholes, en los que se han reemplazado uno o dos hidrógenos, respectivamente, por restos carbonados.
La estructura angular de los éteres se explica bien asumiendo una hibridación sp3 en el oxígeno, que posee dos pares de electrones no compartidos,no puede establecer enlaces de hidrógeno consigo mismo y sus puntos de ebullición y fusión son muchos más bajos que los alcoholes referibles.
Un caso muy especial lo constituyen los epóxidos, que son éteres cíclicos de tres miembros. El anillo contiene mucha tensión, aunque algo menos que en el ciclo propano.
CIclo propano
Epóxido de etileno
Debido a que el ángulo del enlace C-o-C no es de 180º, los momentos dipolares de los dos enlaces C-O no se anulan; en consecuencia, los éteres presentan un pequeño momento dipolar neto (por ejemplo, 1.18 D para el dietil éter).
PROPIEDADES QUÍMICAS
Los éteres tienen muy poca reactividad química, debido a la dificultad que presenta la ruptura del enlace C—O. Por ello, se utilizan mucho como disolventes inertes en reacciones orgánicas.
En contacto con el aire sufren una lenta oxidación en la que se forman peróxidos muy inestables y poco volátiles. Estos constituyen un peligro cuando se destila un éter, pues se concentran en el residuo y pueden dar lugar a explosiones. Esto se evita guardando el éter con hilo de sodio o añadiendo una pequeña cantidad de un reductor (SO4Fe, LiAIH4) antes de la destilación.
Los éteres no son reactivos a excepción de los epóxidos. Las reacciones de los epóxidos pasan por la apertura del ciclo. Dicha apertura puede ser catalizada por ácido o apertura mediante nucleófilo.
( Apertura por neoclófilo) El neoclófilo ataca al carbono menos sustituido.
8. USOS DE LOS ETERES
USOS PRINCIPALES
- Medio para extractar para concentrar ácido acético y otros ácidos.
- Medio de arrastre para la deshidratación de alcoholes etílicos e isopropílicos.
- Disolvente de sustancias orgánicas (aceites, grasas, resinas, nitrocelulosa, perfumes y alcaloides).
- Combustible inicial de motores Diésel.
- Fuertes pegamentos
- Desinflamatorio abdominal para despues del parto, exclusivamente uso externo.
-Es llamado la medicina antigua porque en la antiguedad se usaba como anestesico, debido a que no existian los metodos de anestesia moderna.
9. RIESGOS Y BENEFICIOS DE LOS ETERES Qué son los PBDEs?
Los éteres de polibromodifenilos (PBDEs) son sustancias químicas que retardan el fuego y que se agregan a productos de plástico y de espumas para hacer más difícil que se incendien. Hay diferentes tipos de PBDEs; algunos solamente tienen unos pocos átomos de bromo, mientras que otros tienen hasta diez átomos de bromo unidos a la molécula central.
Los PBDEs existen en forma de mezclas de compuestos químicos similares. Debido a que sólo se mezclan con los plásticos y espumas en vez de unirse a ellos, pueden escapar de los productos que los contienen y entrar al medio ambiente.
¿Qué les sucede a los PBDEs cuando entran al medio ambiente?
•Los PBDEs entran al aire, al agua y al suelo durante su manufactura y uso en productos de consumo.
•En el aire, los PBDEs pueden encontrarse como partículas que eventualmente se depositan en el suelo o el agua.
•La luz solar puede degradar algunos PBDEs.
•Los PBDEs no se disuelven fácilmente en agua, pero se adhieren a partículas y se depositan en el fondo de ríos o lagos.
•Algunos PBDEs pueden acumularse en peces, aunque generalmente en bajas concentraciones.
¿Cómo puede ocurrir la exposición a los PBDEs?
•Las concentraciones de PBDEs en la sangre, leche materna y tejido graso de seres humanos indican que la mayoría de la gente está expuesta a concentraciones bajas de PBDEs.
•Usted puede estar expuesto a los PBDEs a través del consumo de alimentos o inhalación de aire contaminados con PBDEs.
•Los trabajadores que manufacturan PBDEs o productos que contienen PBDEs pueden estar expuestos a niveles más altos que lo normal.
•También puede ocurrir exposición ocupacional en personas que trabajan en espacios cerrados en donde se reparan o reciclan productos que contienen PBDEs.
¿Cómo pueden afectar mi salud los PBDEs?
No hay información definitiva acerca de los efectos de los PBDEs sobre la salud de seres humanos. Las ratas y ratones que comieron alimentos con cantidades moderadas de PBDEs durante unos días sufrieron alteraciones de la glándula tiroides. Aquellos que comieron cantidades más pequeñas durante semanas o meses sufrieron alteraciones de la tiroides y el hígado. En estudios en animales se han observado diferencias marcadas entre los efectos de PBDEs con alto contenido de bromo y los con bajo contenido de bromo.
Hay evidencia preliminar que sugiere que concentraciones altas de PBDEs pueden producir alteraciones del comportamiento y afectar el sistema inmunitario de animales.
¿Qué posibilidades hay de que los PBDEs produzcan cáncer?
No sabemos si los PBDEs pueden producir cáncer en seres humanos. Las ratas y ratones que comieron de por vida alimentos con éter de decabromobifenilo (un tipo de PBDE) desarrollaron tumores en el hígado. Basado en esta evidencia, la EPA ha clasificado al éter de decabromobifenilo como posiblemente carcinogénico en seres humanos. La EPA ha determinado que los PBDEs con menos átomos de bromo que el éter de decabromobifenilo no son clasificables en cuanto a carcinogenicidad en seres humanos debido a la falta de estudios de cáncer en seres humanos y en animales.
¿Cómo pueden los PBDEs afectar a los niños?
Los niños generalmente están expuestos a los PBDEs de la misma manera que los adultos, principalmente al comer alimentos contaminados. Debido a que los PBDEs se disuelven fácilmente en la grasa, pueden acumularse en la leche materna y puede ser transferidos a bebés que lactan.
La exposición a los PBDEs en el útero y a través de la leche materna ha producido alteraciones de la tiroides y del comportamiento en animales recién nacidos, pero no ha producido defectos de nacimiento. No se sabe si los PBDEs pueden producir defectos de nacimiento en seres humanos.
¿Cómo pueden las familias reducir el riesgo de exposición a los PBDEs?
•A los niños que viven cerca de sitios de desechos peligrosos se les debe aconsejar no jugar en la tierra cerca de estos sitios. También se les debe enseñar a no comer tierra y a lavarse las manos con frecuencia.
•Las personas que están expuestas a los PBDEs en el trabajo deben ducharse y cambiar de ropa cada día antes de volver al hogar. La ropa de trabajo debe guardarse y lavarse en forma separada de la ropa del resto de la familia.
10. IMAGENES
11. ¿QUE SON LOS ESTERES?
Los Ésteres son compuestos orgánicos derivados de ácidos orgánicos o inorgánicos oxigenados en los cuales uno o másprotones son sustituidos por grupos orgánicos alquilo (simbolizados por R').
Etimológicamente, la palabra "éster" proviene del alemán Essig-Äther (éter de vinagre), como se llamaba antiguamente alacetato de etilo.1
En los ésteres más comunes el ácido en cuestión es un ácido carboxílico. Por ejemplo, si el ácido es el ácido acético, el éster es denominado como acetato. Los ésteres también se pueden formar con ácidos inorgánicos, como el ácido carbónico (origina ésteres carbónicos), el ácido fosfórico (ésteres fosfóricos) o el ácido sulfúrico. Por ejemplo, el sulfato de dimetilo es un éster, a veces llamado "éster dimetílico del ácido sulfúrico".
Un ensayo recomendable para detectar ésteres es la formación de hidroxamatos férricos, fáciles de reconocer ya que son muy coloreados:
Ensayo del ácido hidroxámico: la primera etapa de la reacción es la conversión del éster en un ácido hidroxámico (catalizado por base). En el siguiente paso éste reacciona con cloruro férrico produciendo un hidroxamato de intenso color rojo-violeta.
En bioquímica son el producto de la reacción entre los ácidos grasos y los alcoholes.
En la formación de ésteres, cada radical OH (grupo hidroxilo) del radical del alcohol se sustituye por la cadena -COO del ácido graso. El H sobrante del grupo carboxilo, se combina con el OH sustituido, formando agua.
En química orgánica y bioquímica los ésteres son un grupo funcional compuesto de un radical orgánico unido al residuo de cualquier ácido oxigenado, orgánico o inorgánico.
Los ésteres más comúnmente encontrados en la naturaleza son las grasas, que son ésteres de glicerina y ácidos grasos (ácido oleico, ácido esteárico, etc.)
Principalmente resultante de la condensación de un ácido carboxílico y un alcohol. El proceso se denomina esterificación:
Un éster cíclico es una lactona.
La nomenclatura de los ésteres deriva del ácido carboxílico y el alcohol de los que procede. Así, en el etanoato (acetato) de metilo encontramos dos partes en su nombre:
La primera parte del nombre, etanoato (acetato), proviene del ácido etanoico (acético)
La otra mitad, de metilo, proviene del alcohol metílico (metanol).
Etanoato de etilo.
En el dibujo de la derecha se observa la parte que procede del ácido (en rojo; etanoato) y la parte que procede del alcohol (en azul, de etilo).
Luego el nombre general de un éster de ácido carboxílico será "alcanoato de alquilo" donde:
alcan-= raíz de la cadena carbonada principal (si es un alcano), que se nombra a partir del número de átomos de carbono. Ej.:Propan- significa cadena de 3 átomos de carbono unidos por enlaces sencillos.
oato = sufijo que indica que es derivado de un ácido carboxílico. Ej: propanoato: CH3-CH2-CO- significa "derivado del ácido propanoico".
de alquilo: Indica el alcohol de procedencia. Grupo general:...
Por ejemplo: -O-CH2-CH3 es "de etilo" En conjunto CH3-CH2-CO-O-CH2-CH3 se nombra propanoato de etilo.
12. PROPIEDADES DE LOS ESTERES
PROPIEDADES FISICAS
Los ésteres pueden participar en los enlaces de hidrógeno como aceptadores, pero no pueden participar como donadores en este tipo de enlaces, a diferencia de los alcoholes de los que derivan. Esta capacidad de participar en los enlaces de hidrógeno les convierte en más hidrosolubles que loshidrocarburos de los que derivan. Pero las ilimitaciones de sus enlaces de hidrógeno los hace más hidrofóbicos que los alcoholes o ácidos de los que derivan. Esta falta de capacidad de actuar como donador de enlace de hidrógeno ocasiona el que no pueda formar enlaces de hidrógeno entre moléculas de ésteres, lo que los hace más volátiles que un ácido o alcohol de similar peso molecular.
Muchos ésteres tienen un aroma característico, lo que hace que se utilicen ampliamente como sabores y fragancias artificiales. Por ejemplo:
Acetato de 2 Etil Hexilo: olor a dulzón suave
butanoato de metilo: olor a Piña
salicilato de metilo (aceite de siempreverde o menta): olor de las pomadas Germolene™ y Ralgex™ (Reino Unido)
octanoato de heptilo: olor a frambuesa
etanoato de isopentilo: olor a plátano
pentanoato de pentilo: olor a manzana
butanoato de pentilo: olor a pera o a albaricoque
etanoato de octilo: olor a naranja.
Los ésteres también participan en la hidrólisis esterárica: la ruptura de un éster por agua. Los ésteres también pueden ser descompuestos por ácidos o basesfuertes. Como resultado, se descomponen en un alcohol y un ácido carboxílico, o una sal de un ácido carboxílico.
PROPIEDADES QUIMICAS
En las reacciones de los ésteres, la cadena se rompe siempre en un enlace sencillo, ya sea entre el oxígeno y el alcohol o R, ya sea entre el oxígeno y el grupo R-CO-, eliminando así el alcohol o uno de sus derivados. La saponificación de los ésteres, llamada así por su analogía con la formación de jabones, es la reacción inversa a la esterificación.
Los ésteres se hidrogenan más fácilmente que los ácidos, empleándose generalmente el éster etílico tratado con una mezcla de sodio y alcohol (Reducción de Bouveault-Blanc). El hidruro de litio y aluminio reduce ésteres de ácidos carboxílicos para dar 2 equivalentes de alcohol.2 La reacción es de amplio espectro y se ha utilizado para reducir diversos ésteres. Las lactonas producen dioles. Existen diversos agentes reductores alternativos al hidruro de litio y aluminio como el DIBALH, el trietil-borohidruro de litio o BH3–SiMe3 reflujado con THF.3
El dicloruro de titanoceno reduce los ésteres de ácidos carboxílicos hasta el alcano (RCH3)y el alcohol R-OH.4 El mecanismo probablemente se debe a la formación de un alqueno intermediario.
El hidrógeno α de muchos ésteres puede ser sustraído con una base no nucleofílica o el alcóxido correspondiente al éster. El carbanión generado puede unirse a diversos sustratos en diversas reacciones de condensación, tales como la condensación de Claisen , la Condensación de Dieckmann y la síntesis malónica. Muchos métodos de síntesis de anillos heterocíclicos aprovechan estas propiedades químicas de los ésteres, tales como la síntesis de pirroles de Hantzsch y la síntesis de Feist-Benary.
Existen reacciones de condensación en las que se utiliza un reductor que aporte electrones para formar el enlace C-C entre grupos acilo, como el caso de lacondensación aciloínica. Los ésteres pueden dar alcoholes con dos sustituyentes idénticos por adición de reactivos de Grignard. Unas aplicación de esta reacción es la reacción de Fujimoto-Belleau.
13. USOS DE LOS ESTERES
Los ésteres son empleados en muchos y variados campos del comercio y de la industria, como los siguientes:
Disolventes
Los ésteres de bajo peso molecular son líquidos y se acostumbran a utilizar como disolventes, especialmente los acetatos de los alcoholes metílico, etílico y butílico.
Plastificantes
El acetatopropionato de celulosa y el acetatobutirato de celulosa han conseguido gran importancia como materiales termoplásticos. El nitrato de celulosa con un contenido de 10,5-11% de nitrógeno se llama piroxilina y con alcohol y alcanfor (plastificante) forma el celuloide. El algodón dinamita es nitrato de celulosa con el 12,5-13,5% de nitrógeno. La cordita y la balistita se fabrican a partir de éste, que se plastifica con trinitrato de glicerina (nitroglicerina). Los sulfatos de dimetilo y dietilo (ésteres del ácido sulfúrico) son excelentes agentes de alcoholización de moléculas orgánicas que contienen átomos de hidrógeno lébiles, como por ejemplo, el midón y la celulosa.
Aromas artificiales
Muchos de los ésteres de bajo peso molecular tienen olores característicos a fruta: plátano (acetado de isoamilo), ron (propionato de isobutilo) y piña (butirato de butilo). Estos ésteres se utilizan en la fabricación de aromas y perfumes sintéticos.
Aditivos Alimentarios
Estos mismos ésteres de bajo peso molecular que tienen olores característicos a fruta se utilizan como aditivos alimentarios, por ejemplo, en caramelos y otros alimentos que han de tener un sabor afrutado.
Productos Farmacéuticos
Productos de uso tan frecuente como los analgésicos se fabrican con ésteres.
Polímeros Diversos
Los ésteres de los ácidos no saturados, por ejemplo, del ácido acrílico o metacrílico, son inestables y se polimerizan rápidamente, produciendo resina; así, el metacrilato de metilo (lucita o plexiglás). De manera análoga los ésteres de los alcoholes no saturados son inestables y reaccionan fácilmente con ellos mismos; así, el acetado de vinilo se polimeriza dando acetato de polivinilo. Las resinas de poliéster, conocidas como gliptales, resultan de la poliesterificación de la glicerina con anhídrido ftálico; el proceso puede controlarse de manera que se produzca una resina fusible o infusible. Cuando la poliesterificación se realiza en presencia de un ácido no saturado de cadena larga del tipo de los aceites secantes, la polimerización de éste por oxidación se superpone a la poliesterificación y se producen los esmaltes sintéticos, duros y resistentes a la intemperie, que son muy adecuados por el acabado de los automóviles. La poliesterificación del etilenglicol con el ácido tereftálico produce fibra de poliéster. Si se da forma de láminas a este material, constituye una excelente película fotográfica.
Repelentes de insectos
Todos los repelentes de insectos que podemos encontrar en el mercado contienen ésteres.
15. IMAGENES
16. BIBLIOGRAFIA
los temas tratados fueron sacados de las siguientes paginas
http://www.quiminet.com/productos/esteres-de-alcohol-6284476267.htm
Suscribirse a:
Entradas (Atom)